Control of neuronal subtype identity by the C. elegans ARID protein CFI-1.
نویسندگان
چکیده
The Caenorhabditis elegans hermaphrodite nervous system is composed of 302 neurons that fall into at least 118 diverse classes. Here we describe cfi-1, a gene that contributes to the development of neuronal diversity. cfi-1 promotes appropriate differentiation of the URA sensory neurons and inhibits URA from expressing the male-specific CEM neuronal fate. The UNC-86 POU homeodomain protein is present in CEM and URA neurons, and can promote expression of CEM-specific genes in both CEM and URA, but CFI-1 inhibits expression of these genes in the URA cells. cfi-1 also promotes appropriate differentiation and glutamate receptor expression in the AVD and PVC interneurons. cfi-1 encodes a conserved neuron- and muscle-restricted DNA-binding protein containing an A/T rich interaction domain (ARID). ARID proteins regulate early patterning and muscle fate in Drosophila, but they have not previously been implicated in the control of neuronal subtype identity.
منابع مشابه
Hox Genes Promote Neuronal Subtype Diversification through Posterior Induction in Caenorhabditis elegans
Although Hox genes specify the differentiation of neuronal subtypes along the anterior-posterior axis, their mode of action is not entirely understood. Using two subtypes of the touch receptor neurons (TRNs) in C. elegans, we found that a "posterior induction" mechanism underlies the Hox control of terminal neuronal differentiation. The anterior subtype maintains a default TRN state, whereas th...
متن کاملThe LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types.
Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain tr...
متن کاملThe Evolutionarily Conserved LIM Homeodomain Protein LIM-4/LHX6 Specifies the Terminal Identity of a Cholinergic and Peptidergic C. elegans Sensory/Inter/Motor Neuron-Type
The expression of specific transcription factors determines the differentiated features of postmitotic neurons. However, the mechanism by which specific molecules determine neuronal cell fate and the extent to which the functions of transcription factors are conserved in evolution are not fully understood. In C. elegans, the cholinergic and peptidergic SMB sensory/inter/motor neurons innervate ...
متن کاملThe C. elegans Tailless/TLX transcription factor nhr-67 controls neuronal identity and left/right asymmetric fate diversification.
An understanding of the molecular mechanisms of cell fate determination in the nervous system requires the elucidation of transcriptional regulatory programs that ultimately control neuron-type-specific gene expression profiles. We show here that the C. elegans Tailless/TLX-type, orphan nuclear receptor NHR-67 acts at several distinct steps to determine the identity and subsequent left/right (L...
متن کاملThe C. elegans even-skipped homologue, vab-7, specifies DB motoneurone identity and axon trajectory.
Locomotory activity is defined by the specification of motoneurone subtypes. In the nematode, C. elegans, DA and DB motoneurones innervate dorsal muscles and function to induce movement in the backwards or forwards direction, respectively. These two neurone classes express separate sets of genes and extend axons with oppositely directed trajectories; anterior (DA) versus posterior (DB). The DA-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 16 8 شماره
صفحات -
تاریخ انتشار 2002